Ambient Timer – Unobtrusively Reminding Users of Upcoming Tasks with Ambient Light

Alice is working on a report for the head of her department. At the same time, there is a meeting scheduled in thirty minutes, which she has to attend. The Ambient Timer is already illuminating the wall behind her monitor in a low-attention state, so Alice feels confident that she will be reminded of the meeting. A few minutes before the meeting, the status of the ambient light display has changed to a more salient, intense output. While she is still working on her report, she slowly becomes aware of the nearing deadline and starts finishing the paragraph she is currently working on. One minute before the meeting the light has become so salient that it is hard to ignore. Alice stores the document on the server, puts her computer into sleep mode, and arrives at the meeting on time.

ambienttimer

A timer that uses ambient light

The Ambient Timer is a research prototype developed in the Interactive Systems Group of the OFFIS Institute for Information Technology. Its goal is to gently remind information workers about upcoming events. such as illustrated in the scenario above. It uses LED glued to the back of the monitor to illuminate the wall in the peripheral field of vision of the worker.

User Study

With this prototype, we conducted a user study in collaboration with the HCI and Mobile Computing Group of Telefónica Research. We experimentally studied two instances of the Ambient Timer:

  • expo: a gradual change from green to red, becoming exponentially faster, and
  • sinus: a sinusoidal change between red and green which became increasingly faster.

We compared these reminders against two traditional techniques to keep track of appointments:

  • a clock, such as the one in the corner of your computer screen, and
  • a popup alarm, such as when you use Outlook, Lotus Notes, or the OS X Calendar for your appointments.

For the study, we asked participants to copy and correct texts. Meanwhile, a 10-minute timer was running in the background. The task was to finish as many texts as possible in 10 minutes, but without “overshooting”, i.e. having an unfinished text after 10 minutes. In the expo, sinus, and clock conditions, the remaining time was presented by the Ambient Timer or a clock, respectively. In the popup condition, no time was given, but a popup informed the participants 30 seconds before the end of the time limit.

The experiment used a repeated-measures design, i.e. each participant tested each of the four reminder systems in counter-balanced order.

Results

Our results show that participants experienced significantly fewer interruptions when using Ambient Timer in the expo condition, i.e. with an exponential change from green to red, compared to all other reminder techniques in our experiment. Their average typing speed was significantly faster when in this condition, too. Participants ranked this design best, felt most confident using it and preferred it over all other techniques.

Conclusions

This experiment shows that using light in the periphery around the monitor is a great way to provide information workers with information in an ambient way. Used as Ambient Reminder, ambient light might help to structure typical office work, which is often a mix of concentrated desktop work and scheduled meetings and appointments. It allows office worker to avoid to constantly check the clock or be interrupted by alarming popups interrupt.

Publication

The details of the experiment have been published in the 14th IFIP TC13 Conference on Human-Computer Interaction, held in September 2013 in Cape Town, South Africa:

Heiko Müller, Anastasia Kazakova, Martin Pielot, Wilko Heuten and Susanne Boll.
Ambient Reminder: Unobtrusively Reminding Users of Upcoming Tasks with Ambient Light.
INTERACT ’13: 14th IFIP TC13 Conference on Human-Computer Interaction, 2013.

Share this:

Peripheral Vibro-Tactile Displays

If you are sitting, which parts of your body are currently touching the chair? Are you leaning on a backrest or an armrest?

Think about it! Now, you are aware! But have you been just before reading this post? Probably not!

This is the beauty of peripheral perception, i.e. perceiving sensory input in the periphery of our attention. Your brain perfectly knows how to process the touch input it gets from the different parts of your body so that you do not fall of the chair. At the same time, you can perfectly focus on reading this text.

Using our Sense of Touch for Periperphal Communication

But, could this property of our sense of touch also be used to communicate information in the periphery of attention via mobile and ubiquitous computing devices? For example, imagine a bracelet indicating the time remaining until your next appointment, or your mobile phone indicating that there are no unread emails, messages, or social network updates to attend to.

Peripheral Vibro-Tactile Displays

In our research on peripheral, vibro-tactile displays, we made first investigations to prove that such information presentation could be possible with vibration motors, or vibro-tactile displays, as they can be commonly found in our mobile phones.

Study: Exposing People to a Constant Heartbeat

15 participants wore a vibro-tactile display in their pocket for 3 days. The display was set to create a constant, soothing, heartbeat-like vibration pattern. Via mobile phone, the participants adjusted the intensity, so that the vibration was barely perceptible.

Death Events: Testing Awareness

To test whether the vibration was still perceived, it died after 15 to 60 minutes. As soon as the participants noticed, they had to acknowledge the death of the vibration by pressing a button on a mobile phone. In the study, the majority of the death events were noticed between 1 and 10 minutes after the vibration had died. This is an indicator that participants were still aware about the vibration, even though it was set to very low intensities.

Testing Ambientness

To check whether the vibration had left the participants conscious perception, i.e. the focus of attention, we opened a questionnaire on the phone once the participants had pressed the button. In 67.7% of the cases, the participants indicated that the subjectively did not think that they had noticed quickly that the vibration had died. Additionally, in 94.4% of the cases, the participants reported to not be annoyed by the vibration. These two results indicate that the heartbeat vibration was indeed not in the focus, but in the periphery of attention.

Conclusions

These results provide first evidence that vibration patterns can form non-annoying, lightweight information displays, which can be consumed at the periphery of a user’s attention.

However, these findings are only first steps. We need more evidence to back up the findings, and we need more insights into how to adjust the intensity of the vibration pattern to different situations, so that we always hit the sweet spot of being just barely perceptible.

Publication

The details of this study will be presented at ACM MobileHCI ’13, the 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, held in August 2013 in Munich, Germany.

Martin Pielot and Rodrigo de Oliveira.
Peripheral Vibro-Tactile Displays.
MobileHCI ’13: 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, 2013.

Share this:

Ambient Visualisation of Social Network Activity

Social network, such as Facebook or Twitter, are an important factor in the communication between individuals of the so called digital natives generation. More and more often, they are used to exchange short bursts of thoughts are comments as a means of staying connected with each other.

The instant communication enabled by those social networks has however created a form of peer-group pressure to constantly check for updates. For example, has an informal get-together been announced or has somebody requested to become your friend? This emerging pressure can make people return to the computer more often than they want. This is why we find our colleagues regularly looking for new status updates in meetings, or on our parties we see it more often that our friends cannot resist to check their Facebook account.

One solution to this is notifying users when something important happened. Mobile phones as personal, ubiquitous, and always connected devices lend themselves as platform, as they are carried with the user most of the time. This, it is no surprise that our phone now not only notify about incoming short messages, but do the same for Twitter @mentions, Facebook message, or friend requests. However, these notifications may go unnoticed, too. Thus, instead of checking our Facebook & Twitter account, we keep looking at our mobile phone for notification items.

With AmbiTweet, we investigate conveying social network statuses by ambient displays. We use a live wallpaper showing a beautiful blue water.The wallpaper can be connected with a Twitter account and visualizes the level of activity in an ambient way. The higher the level of activity on this Twitter account, the brighter and the more busy the water becomes. This can be perceived even in the periphery of the field of vision. Thus, users can become aware of important activity without the need to focus the eyes on the phone.

Ambient displays, in general, have the advantage that they convey information in a continuous but unobtrusive way. They exploit the fact that the brain can process information pre-attentive, i.e. without generating apparent cognitive load. AmbiTweet therefore allows concentrating on a primary task while remaining aware of the level of activity on a social network account.

Share this: