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Many of today’s mobile products and services engage their users proactively via push notifications. However, such notifications
are not always delivered at the right moment, therefore not meeting products’ and users’ expectations. To address this challenge,
we aim at developing an intelligent mobile system that automatically infers moments in which users are open to engage
with suggested content. To inform the development of such a system, we carried out a field study with 337 mobile phone
users. For 4 weeks, participants ran a study application on their primary phones. They were tasked to frequently report
their current mood via a notification-administered experience-sampling questionnaire. In this study, however, we analyze
whether they voluntarily engaged with content that we offered at the bottom of that questionnaire. In addition, the study
app logged a wide range of data related to their phone use. Based on 120 Million phone-use events and 78,930 questionnaire
notifications, we build a machine-learning model that before delivering a notification predicts whether a participant will click
on the notification and subsequently engage with the offered content. When compared to a naïve baseline, which emulates
current non-intelligent engagement strategies, our model achieves 66.6% higher success rate in its predictions. If the model
also considers the user’s past behavior, predictions improve 5-fold over the baseline. Based on these findings, we discuss the
implications for building an intelligent service that identifies opportune moments for proactive user engagement, while, at
the same time, reduces the number of undesirable interruptions.
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1 INTRODUCTION
Many of today’s mobile software products and services, such as games, brands, social networks, or news feeds,
need to engage their users in order to be successful, where engagement refers to the involvement into something
that attracts and holds our attention [8, 37]. Failing to engage users can endanger the sustainability of products
and services, particularly if they are free to use and cover their costs through secondary streams of income,
such as advertisements or upsells, which require repeated use of the service. However, engaging mobile users is
increasingly challenging as we are exposed to an ever-growing number of online products and services which
are all competing for our attention.
Given that user attention is a limited resource, we can observe a shift from pull-driven towards push-driven

engagement1, where mobile apps try to engage users proactively via, e.g., push notifications. As a result of this
paradigm shift, users are exposed to an increasing number of ill-timed notifications that are delivered in an
as-soon-as-possible manner. Unfortunately, this naïve strategy leads to a number of negative outcomes, such
as decreased satisfaction, uninstalls, negative emotions, and even hyperactivity or inattention [2, 25, 28, 58].
For that reason, a growing body of work from the UbiComp community has explored how to automatically
detect moments when notifications are not interruptive [34, 39, 42, 43, 47, 54]. However, predicting if users are
interruptible, i.e., whether their attention may be attracted, does not imply that their attention will be held as
well, i.e., result into engagement.

In this paper, we describe our work towards the design of an intelligent system to detect opportune moments
for products and services to engage users, i.e., identifying moments where content is likely to attract and hold the
user’s attention. If done properly, such a system would contribute to reduce the cost of inopportune interruptions
as well as to improve engagement.

To explore the feasibility of detecting opportune moments for engaging with users, we conducted a field study
with 337 participants. For an average duration of 4 weeks, the participants used a mobile study app that (1)
passively collected rich sensor data about their context and phone usage; (2) frequently prompted participants
to fill out a very short mood questionnaire that served as a deception regarding the real goal of the study; (3)
below the questionnaire responses, recommended diverse content from different categories, such as games,
reader/news, music, and markets [51]; and (4) recorded when the participants voluntarily choose to engage with
and consume that recommended content. The data collection yielded over 120 Million mobile phone use events
and 78,930 instances of questionnaire notifications. In 30,689 cases, participants responded to the questionnaire,
and in 3,367 cases, they voluntarily engaged with the suggest content. We used machine-learning methods to
create a classifier that predicts, on the basis of the mobile phone use events, whether a notification will lead to a
click and subsequently to voluntary engagement. The main contributions of this paper are:

• a machine-learning-based approach for predicting if a user will engage with proactively-recommended
content, only relying on data collected via the mobile phone, achieving a 66.6% better precision than a
baseline model;
• an analysis of the relative contribution of a range of variable categories to the developed model, namely
demographics, phone status, phone use patterns, communication activity, and context, showing that context,
communication activity, and phone use patterns contribute most to the top-ranked predictors; and
• an investigation into the predictive power of past behavior with respect to the engagement with the
recommended content, which shows that the classification accuracy can be increased over 500% over the
baseline model while significantly reducing engagement attempts with users who did not show much
interest in the past recommended content.

1https://techcrunch.com/2015/04/21/notifications-are-the-next-platform/
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With its focus on engagement prediction, this study fills a gap in a so far understudied aspect of interruptibility.
Our findings and implications can inform the design and realization of an intelligent, engagement-timing service,
that minimizes the disruption of their users while providing value to both users and service providers.

2 RELATED WORK
Attempting to proactively engage users with a product or service requires to draw their attention to it. The
common form of attempting to attract user attention to content on their mobile phone is done via notification
alerts. Traditionally being used for phone calls, SMS, and alarms, notifications are becoming increasingly pervasive.
Previous work largely focused on ensuring that these alerts will not interrupt users. In this section, we review
previous findings on what factors are known to affect the success of notifications and other types of alerts.

Source & Content. Alerts can originate from different sources and deliver different contents. For mobile phone
users, the most common type of alerts are those from computer-mediated communication applications [51]; in
particular if the user (a) communicates with the sender [44, 50] or (b) is close to the sender [33]. Alerts from
non-communication apps are received less favorably [27, 33, 34, 48], and their content appears to have little
impact on the perceived timeliness of the interruption [14]. We see this as an opportunity to improve notification
delivery policies of this type of notifications, as we explore in this paper.

Context. Since mobile phones are typically close to their users all day long [11], alerts can take place in all
kinds of situations, even the most inappropriate ones [45]. One popular strategy to avoid the negative impact of
inopportune interruptions is to schedule alerts for specific times of the day [4, 15, 20, 31, 52, 57]. Using timing
information, such as the hour of the day, has been found to be a useful factor in some use cases, such as predicting
attentiveness to messages [46] or the suitability of a moment for health interventions [52]. Recent work on
boredom [47], engagement [32], and ritualistic phone use [17] found that people exhibit more stimulation-seeking
behaviors in the evenings. However, other works did not find time to be a good predictor for engagement push
notifications [31, 57]. In a study with 126,000 users of a shopping brochure app, Westermann et al. [57] found
that solely relying on the time of the day for sending notifications with recommendations had virtually no
impact on how fast people engaged with the recommended content. All in all, there is no conclusive evidence
that engaging users during certain hours of the day is a promising strategy. Further research has studied the
impact of the user’s location to determine her or his receptiveness to alerts [33, 49, 50, 52]. For example, Sarker et
al. [52] found that, for health intervention alerts, participants were less available at work and more available
outside work. Mehrotra et al. [33], however, found that response times to mobile phone notifications in general
do not significantly vary depending on the location (home, work, other). These results indicate that for most
types of engagement, the user location is not an important factor. The use of sensors to estimate the state of
the user’s surroundings, such as noise or light sensors in mobile phones, has been another approach to estimate
interruptibility of mobile phone users [33, 49]. Ambient noise was not found to be a significant factor to determine
a user’s responsiveness to notifications in general [33]. We did not find any conclusive results related to light
sensor data reported in the literature.

Current Activity. The user’s current activity may indicate openness to interruptions as well [18, 33, 50, 52].
Ho et al. [18] found evidence that messages delivered between physical activities can be received more positively.
Interruptions can be less opportune during certain modes of transportation, such as biking [33], which can be
inferred from the phone’s motion and orientation sensors [49, 52]. Furthermore, interruptibility is negatively
affected by concurrent tasks that are challenging, require concentration, or in which the user is not skilled [43].
Rote work, i.e., phases of work with high engagement on tasks which are not challenging, are correlated with
openness to interruptions [29]. The use of entertainment apps, a possible proxy for openness to interruptions and
engagement, is negatively correlated with alertness and the use of productivity apps [36]. Related work appears
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to reveal the following pattern: if mobile phone users are already engaged with demanding tasks, moments are
inopportune. Concurrent tasks that are less engaging, such as riding the metro or doing rote work, may indicate
opportune moments for engaging users.

Phone Status. The phone state itself can give important insights to interruptibility. For example, past work
has used the light sensor to detect if the screen of the phone is covered [27, 46, 49], which happens, e.g., when
the phone is stowed away. This state usually correlates with lower probability that the mobile phone owner
will promptly react to an alert. Regarding the phone’s ringer mode, Pielot et al. found that notifications of all
types are attended fastest when the phone is set to vibration mode [45], and that the ringer mode can be an
important predictor of how fast people attend to messages [46]. Without any perceivable alert, users are less
likely to immediately attend to notifications [7]. Conversely, Mashhadi et al. [31] found that the modality of
the alert did not affect attending times of the participants of their study. Furthermore, only a small fraction of
mobile phone users consciously manage openness to interruptions through, e.g., notification settings [56]. Thus,
evidence is not conclusive whether if people do not perceive the alert, they will be less likely to engage.

Patterns of Phone Use. Iqbal and Bailey [21] proposed to defer notifications when the user is busy by applying
the concept of bounded deferral [19]: for a limited period of time, alerts are attempted to be delivered during
automatically-detected breakpoints between (work) tasks. When this period of time has been exceeded, noti-
fications are delivered regardless of the state of the user. In the context of office work and email, this concept
has been implemented by monitoring the user’s interaction with the computer, such as app switches or mouse
movements [22, 23, 30]. In the context of mobile phones, waiting for the end of episodes of mobile interaction can
be a simple, yet powerful, approach to identify breakpoints, as demonstrated by Fischer et al. [13]. Monitoring
interaction events through Android’s accessibility service allows to detect breakpoints during episodes of mobile
phone interaction [38–40]. Beyond breakpoints, certain types of phone usage, such as killing time, have been
found to indicate openness to interruptions, even if the user is not at a task breakpoint. For example, recently
observed battery drain, number of unlocks, or number of apps launched correlates with increased feelings of
boredom, which in turn is correlated with higher openness to consume entertaining news articles [47]. Thus,
related work shows the monitoring patterns of phone use is a promising strategy to identify opportune moments
for user engagement.

Communication. During meetings or in the presence of co-workers, people sometimes rated themselves less
open to interruptions – depending on whether they are speaking or listening [15, 20, 27]. Similarly, Pejovic et
al. [42] found that changes in the devices seen through Bluetooth –a proxy for the number of nearby people–
correlate with the users’ perceptions of when a moment is opportune for interruption. In contrast, Schulze and
Groh [53] found that during some types of conversations, such as small talk, people are even more open to
interruptions by notifications. The use of computer-mediated communication is another indicator regarding the
openness to interruptions [32, 44, 47]: recent incoming calls have been correlated with un-opportune moments
while recent outgoing calls are correlated with opportune moments to deliver notifications. In sum, previous
findings indicate that light-weight communication, such as small talk, messaging, or (terminated) phone calls
indicate opportune moments, while more engaged types of communication indicate inopportune moments.

Affect and Personality Traits. Sarker et al. [52] found that participants weremore available to health interventions
when they were happy or energetic versus when they were stressed. With respect to proactively-recommended
content, Kushlev et al. [24] found that when feeling good, mobile phone users are less likely to engage with
mentally demanding tasks. When feeling calm, users are more likely to engage with diverting tasks. When feeling
energetic, user are less likely to respond to engagement attempts altogether. Participants who scored high in the
Boredom Proneness personality trait (measured by the Boredom Proneness Scale [12]) were more likely to click
on notifications that suggested to read articles [47] than participants with low scores in boredom proneness. A
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small (n = 11) data set by Mehrotra el al. [34] suggests that extroversion and neuroticism might play a role in
how fast people attend to mobile phone notifications in general. Thus, previous work indicates that emotions and
personality affect the user’s openness to engagement as well.

Engagement with Content. As mentioned, most previous works focus on whether it is a good moment to attract
attention via a notification [13, 34, 43, 45, 55]. As argued by Turner et al. [55], there is a difference between being
reachable, i.e., attracting the user’s attention, and being receptive, i.e., consuming the notifications content. In
this work, we focus on predicting whether beyond attracting the user’s attention, the moment permits that the
attention will be held, i.e., that the user will engage. Fischer el al. [14] studied how receptive users are to SMS
depending on the content. They report that “the factors interest, entertainment, relevance and actionability
influence people’s receptivity significantly”, indicating that ultimately the content plays an important role in user
engagement. In a recent study, Mathur el al. [32] showed that patterns of mobile phone use can estimate the level
of engagement while the user is already using a mobile application, having electroencephalogram (ECG) metrics
as ground truth. This can be very useful to learn how successful an attempt to engage users was, but only if users
decide to engage with the suggested content. Hiniker el al. [17] implemented a classifier to distinguish whether
the phone is used in a goal-oriented fashion or in a ritualistic fashion without a clear goal in mind – hypothesizing
that the latter state would be useful for recommender systems. Future work needs to prove whether ritualistic
phone use equates opportune moments to engage users. Okoshi el al. [40] tested a breakpoint-detection system to
time notifications of Yahoo! JAPAN. On the basis of data from over 680,000 users, they show that response times
to notifications can be significantly reduced (27.32 instead of 54.30 minutes mean response time). The breakpoint
detection increased click-through rates and engagement scores, but the effect was not statistically significant.
Pielot el al. [47] demonstrated that it is possible to predict from mobile phone data whether users are bored, and
that when predicted bored, users are more likely to engage with a specific type of content, namely entertaining
news articles, on their smartphone. In this work, we advance the state of the art by focussing on predicting the
likelihood that users will engage with a wide range of content a-priori to the engagement attempt, independent
of how the phone is used, and independent of the current mood of the user.

3 GOAL AND HYPOTHESIS
The primary goal of this work is to enable the development of a mobile phone-based, intelligent service that
uses a machine-learning component to estimate in real time when it is a good moment to engage with the
user. Engagement can mean different things, depending on the product or service. Many content-based services,
such as blogs, social networks, or news portals, offer their content for free and create revenue by exposing its
users to advertisement: the more time users spent “on site”, the higher the monetization. Other services, such
as games, monetize by selling special upgrades or perks. These upsells are more likely to occur in engaged,
frequently-visiting players. In other cases, such as apps from mobile phone providers, engagement can mean to
remind customers to top-up the account before the balance reaches zero – which can equate to a loss in revenue.

The common factor in these examples is that they require the time and the openness of users to engage with
the service. Therefore, simply finding a good moment where a user is reachable [55] by a notification or another
type of alert, as covered extensively by previous work, is insufficient. Consequently, the intelligent service we
envision needs to estimate whether users are in a situation where they are likely to actually engage with the
suggested content.
The aim of this study is to explore, in a systematic way, to which extent it is possible to predict openness for

engagement from data that can be collected by a mobile phone application, such as phone status (e.g. whether the
screen is on or off), sensor data (e.g. the current location), and other types of information (e.g. the current time).

Our key hypothesis is that the inference of the probability to engage with content can be done independently
of the actual content. This is important to enable the design of a smart notification system that would be useful
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to a variety of products and services and a wide range of recommended contents. We hypothesize that we can
accurately predict the probability that a mobile user will engage with recommended content from the data
collected from a rich set of phone sensors. Note that we do not make any hypothesis about the types of features
and patterns that would perform well. Hence, we compute a rich set of features and carry out state-of-the-art
feature selection.
In the next section, we describe our methodology, driven by our goal and hypothesis.

4 METHODOLOGY
To systematically explore which type of information available in mobile phone applications indicates good
moments to engage with users, we conducted a field study, which can be summarized as follows:
• For an average duration of 4 weeks, 337 participants installed a study application onto their primary mobile
phones (Android) and kept it running in the background.
• The application created about 10 to 15 notifications per day. Such notifications led to a mood questionnaire
with 4 Likert-scale items that could be answered in less than 10 seconds. We collected 30,689 responses to
the questionnaire.
• At the bottom of the questionnaire, two types of content were offered to the users, randomly chosen from
a pool of eight different types of content, corresponding to different services (e.g., games, news, videos,
etc.). In 3,367 cases, participants engaged with the offered content.
• While participants believed that the mood questionnaire was the main purpose of the study, what we were
interested in was their engagement with the recommended content. Hence, we logged whether instead of
simply closing the questionnaire, they opened one of the two suggested contents, which we refer to as
engaging with the recommended content.
• At the same time, the application logged phone usage patterns from a wide range of sensors and other
information sources.

In the following section, we explain the details of the methodology as well as the rationale behind our design
choices.

4.1 Study Design
Different products and services may have different definitions for what it means to engage with their users.
Thus, the best-performing, data-driven, intelligent algorithm would likely be one which is trained on data and
observations from users of their target product or service. However, this requires to adapt the algorithm to each
new product individually. This implies a cold-start period during which proactive recommendations are made
using non-optimal decision-making criteria (e.g., at random or at certain specific times), potentially harming
the user experience. Depending on how frequently the product owner is willing to collect sample data (e.g., by
sending notifications), it may take weeks or months until the system has collected a sufficient amount of data to
build a robust model. Hence, we decided to make the study as independent from the content as possible, so that
its findings can be generalized more easily. To achieve this goal, we adopted the following three design decisions.

First, drawing on the services that we envision to serve, we exposed participants to content from a wide range
of different products and services, namely games, articles, multimedia, entertainment, questionnaires, and stores.
In total, there were 8 different options of content to engage with (Fig. 1):
• An action video game, randomly selected out of a curated set of three action games (from Silvergames.com).
• A puzzle video game, randomly selected out of a curated set of three puzzle games (from Silvergames.com).
• A curiosity/cultural article (the Wikipedia’s “Today’s Featured Article” web page).
• An assortment of daily news (Yahoo’s “Latest News and Headlines” web page).
• A randomly selected funny fact (from Unkno.com).
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Trending Video Fun Facts 

Action Games Trending GIFs 

Game Shop Featured Article 

Personality 
Questionnaire 

Thinking Game 

Fig. 1. Types of content offered to participants. Participants had two randomly chosen options to choose from.

• A trending animation (randomly selected from Giphy’s database of trending GIFs)
• A trending video (randomly selected from YouTube’s database of trending videos)
• A psychometric questionnaire (non-random, sequentially selected from the following list: the Big Five
Personality Test, the Personal Health Questionnaire Depression Scale (PHQ-8), the Boredom Susceptibility
Scale (SSS-BS), the Multidimensional State Boredom Scale (MSBS) and the Self-Assessment Manikin (SAM).
Once all of the questionnaires were answered, the application started to cycle between the last two
questionnaires, MSBS and SAM, which perform state assessments.

Second, each time the participants were exposed to the questionnaire, we only offered two options of content to
engage with at a time. These options were chosen randomly. The rationale here was to dissociate the participant’s
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reaction from the content itself. If the same content was to be made available every time, this would allow
participants to develop a stable attitude towards some type of content, such as becoming a devotee of a particular
game. In this scenario, engagement would not necessarily have indicated an appropriate moment but would
rather have been a reflection of the participants’ attitude towards such content.

Third, to further dissociate the participants’ reactions from the content, we attempted to ensure that the actual
content was different every time the user engaged with a specific category. For example, participants would never
encounter the same game or the same fun fact in a row. Instead, where possible, content was cycled through
every time that it appeared as option in the questionnaire. Thus, prior to clicking on one of the content buttons,
participants did not know exactly what content they would receive.

4.2 Proactive Content Suggestion
We employed the experience-sampling method [26] to explore openness to engagement throughout various
moments of the day. As trigger, we used notifications generated by our study application (Fig. 2). These notifications
were posted semi-randomly throughout the day (∼10–15 notifications per day). Prior to triggering the notification,
the application made sure that all information sources were updated. Most notably, we started collecting data
from all sensors 30 seconds before sending the notification in order to capture the participants’ context.

Fig. 2. Experience-Sampling Notification

If the participants did not respond to a notification within 10 minutes, it was removed from the notifications
tray. In this case, we consider the moment of posting the notification as an inopportune moment for engagement.
This time threshold was chosen since the majority of notifications are attended to within this time frame [45],
and since previous work by Mehrotra et al. considered notifications as unattended if they were not clicked within
this timespan [34].

4.3 Decoupling Content via an IntermediateQuestionnaire
Upon clicking on the notification, participants were taken to the short questionnaire shown in Figure 3. The
rationale for presenting a questionnaire instead of the actual content was twofold.

First, the questionnaire served as deception regarding the true purpose of the study. The experience sampling
notification asked the participant to report “How do you feel?”. The questionnaire contained four items about the
participants’ emotional state and took less than 10 seconds to complete. A fifth item asked the participants to select
one of three buttons, and served as a means to keep our data clean from random responses (Fig. 3). The informed
consent showed participants an illustration, explaining that we only expected responses to these questions. The
suggested content was visually marked as optional, explaining that it only served as a gimmick and could be
ignored. Past responses would be visualized on the main screen of the study application so that participants
could see an overview of their history of emotional states. The recommended content was suggested through
two buttons towards the bottom of the questionnaire (Fig. 3). The participants had been clearly and repeatedly
informed that engaging with the suggested content was completely voluntary. Therefore, if participants engaged
with the suggested content, we can assume that they were doing it out of free will and because their current
context represented a good moment for doing so.
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Fig. 3. Experience-Sampling Notification

The second rationale for introducing an intermediate questionnaire was to decouple the incentive mechanism
from the observed target behavior, as there is an inherent challenge of incentivizing voluntary engagement with
suggested content. If we had paid the incentive simply for joining the study by installing the study application,
we could not have guaranteed exposure to the content suggestions. Participants could have simply disabled
notifications altogether. If the incentive had been tied to a minimum number of engagements with suggested
content, we would not have been able to distinguish between an opportune moment for engagement and
engagement for the sake of collecting the incentive. Instead, participants were paid in full when they had
accumulated 21 days during which they responded at least twice to the questionnaire, independently of whether
they had opened any of the content suggestions.

4.4 Logging Patterns of Mobile Phone Use
One of the key hypotheses of our work is that certain patterns of phone use co-occur with opportune moments
for engagement. Therefore, monitoring patterns of phone use can infer whether a given moment is opportune or
not. In our intelligent system, we characterize mobile phone usage patterns by the information available to the
app through mobile sensors or other information sources.
A priori, it is difficult to know which sensors and other sources of mobile phone usage are predictive of our

target variable. As seen in the Related Work Section, the predictiveness of features can differ depending on
the use case. An ideal approach for a product or service would thus be to conduct a learning phase, where all
available sensors and other sources of information are collected, and then use state-of-the-art machine learning
algorithms to identify which of these information sources are most predictive. However, this is impractical for two
reasons: first, some sensors have significant resource requirements and cause the battery to deplete significantly
faster. Second, some sensors and other information sources require special permissions, because they access
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personally-identifiable information. Users have become quite sensitive to both battery consumption and required
permissions. Product owners may not be willing to risk alienating the existing user base in order to follow this
ideal approach. With this study we propose a more practical approach: establish the prediction power of available
information sources in a general context. Once the prediction power is established, the value of each information
source can be weighted against the added battery drain and the permission it requires when implementing a
product-specific intelligent system.
To enable such informed decisions, the application built for this study collects a wide range of information

obtainable through Android OS. Some examples are the user location, the foreground app, notifications, and
screen events. Android OS was chosen since it provides access to a significantly larger number of information
sources than iOS. To keep the overall energy consumption reasonable, we used three strategies to collect data:

(1) System-wide broadcasted events, such as battery level, were collected always by registering to the respective
broadcast receivers and callbacks.

(2) Data from energy-intensive sensors, such as location, was collected every 10 minutes for 30 seconds.
(3) Data related to the user’s interaction with the phone, such as the app in foreground, was only collected

while the screen was unlocked.

With these strategies, we limited the battery consumption to a level that the study application was shown in the
OS internal battery usage view as consuming about the same amount of battery as other popular apps, such as
Facebook or WhatsApp.
Since the application was part of a dedicated study, we were also in a position to ask participants to grant

two special permissions: access to accessibility events and notification events. To get access to these events,
users currently have to visit a dedicated view in the settings and manually enable them for the requesting
application. Since accessibility and notification events can contain potentially sensitive information, the informed
consent contained a section specifically dedicated to those events. During the setup process, the application itself
explained the participants how to grant these two special permissions and automatically sent them to the correct
settings view.

4.5 Recruitment
The goal of the study was to obtain data from a representative sample. Hence, we recruited participants through
a specialized agency. We requested a sample that matches the gender and age distribution of the country of
study in Western Europe. The only restriction was that people were required to own an Android phone. Android
phones account for the large majority (∼ 90%) of the smartphone share in the country of study.

Over 500 people joined the study. However, we only consider data from 337 participants who participated for
at least 10 days and gave at least 20 valid responses to the questionnaire. The participants’ ages ranged from
18 to 66 years (M = 37.85, SD = 11.01), and the gender split we obtained was balanced (52.8% female, 47.2% male).
The mean number of active participation days was 27.43 (Mdn = 27, SD = 11.49).

4.6 Procedure
People with interest in joining the study were first directed to the informed consent, which had been approved by
the legal department of our institution. The consent form listed all data to be collected in the study and gave extra
details about potential personally-identifiable information. The participants then were taken to an installation
guide that explained how to install the mobile application. We ran informal usability tests to ensure that the
installation process was fast and easy to understand. The data collection commenced once the app was installed,
set-up properly, and once the participants confirmed their agreement with the informed consent from within the
app.
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To receive their compensation, participants were required to accumulate 21 active participation days before a
fixed end date. Each day with at least 2 complete responses to the notification-administered questionnaire was
considered to be a day of active participation. Through a visual annotation of a screenshot of the questionnaire,
we emphasized that the engagement with the suggested content was completely voluntary and not required to
receive the compensation. Hence, our incentive only ensured that participants got exposed to the recommended
content, but it did not require them to engage with it. We informed participants that the app would typically
notify them about 10–15 times a day. The rationale was to minimize the pressure to interact with each and every
notification, and allow participants to ignore notifications during moments that were inopportune to fill out the
questionnaire.

5 DATA ANALYSIS
For the analysis, we only consider data that was collected between the second and the last response to the
questionnaires. This way, we exclude all data from situations where participants had already terminated or
abandoned the study without uninstalling the app. We further exclude the first response to reduce bias from the
phase during which participants were still familiarizing themselves with the application. The resulting data set
contains over 120 million phone usage events and 78,930 notifications.

5.1 Target Variable
Our target or regressor is a binary variable with two values: {1} when the user opened the questionnaire and
engaged with one of the two suggested contents by clicking on it, and {0} when the user either did not open the
questionnaire or opened it but ignored the suggested content. Out of the 78,930 notifications, 30,689 (38.9%) were
clicked, i.e., the participants opened the questionnaire. In 3,367 of those 78,930 otifications (4.3%), participants
further opened one of the recommended pieces of content, i.e., they engaged with the content as explained in
Section 3. In this case, we assume that the moment when the notification was posted represents an opportune
moment for engagement. While the fraction of positive instances is comparably low, we observed a sufficient
number of positive instances for training a machine learning algorithm and performing an in-depth analysis
thanks to the large dataset.

5.2 Feature Extraction
Because we had no a priori hypothesis about which types of features would perform well, we computed a rich set
of features from the available mobile phone use data and later employed a model with implicit feature selection.
Our goal was to characterize the moment (and indirectly the context) before the experience-sampling notification
was posted. Inspired by Choy et al. [10], we computed features corresponding to three different time windows:
the current moment (e.g., current screen status or number of unlocks in the last 5 minutes), recent (e.g., fraction of
time screen was on in the last hour), and current day (e.g., fraction of time screen was on since 5 am today). For
each of these time windows, and in line with related work, we compute 197 features that belong to 5 different
groups of variables:
(1) Communication Activity contains 37 features related to computer-mediated communication. This group

includes features that show how often a user is using the phone to communicate with others by, e.g., sending
or receiving messages, or making or replying to phone calls. For instance, a user that just got distracted by
an incoming phone call might not be open to further interruptions. Examples of Communication Activity
features are: number of SMS messages received in the past hour, time since the last incoming phone call, or
category of the app that created the last notification.

(2) Context comprises 73 features related to the situation of the mobile phone user, i.e., his or her environmental
context. The context of use often determines whether it is appropriate or safe to interact with the mobile
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phone. For instance, being at home during the weekend may indicate opportune moments for interruption,
whereas being at work during the morning may indicate the opposite. Examples of Context features are:
time of day, estimated current distance from home, recent levels of motion activity, or average ambient
noise level during the last five minutes.

(3) Demographics refers to the age and gender of the user. These features can be important to determine
openness to interruptions, as one can assume, for example, that adults tend to have significantly less personal
time available to them when compared to other age ranges due to family or employment responsibilities.
Demographics are an exception to the other groups, since they cannot directly be observed from the phone.
However, they are comparably easy to obtain or infer [3].

(4) Phone Status includes 13 features related to the status of the mobile phone. For instance, a device with
screen status ‘unlocked’ indicates that the user is currently using the phone, thus a notification might
be interrupting a concurrent task. Examples of Phone Status features are: the current ringer mode, the
charging state of the battery, or current screen status (off, on, unlocked).

(5) Usage Patterns spans 72 features that relate to the type and intensity of usage of the phone. For instance, a
user engaged in playing a game or watching a video may be less open to an interruption, whereas surfing
on the Internet might be a better moment. Examples of Phone Usage features are: number of apps launched
in the 10 minutes prior to the notification, average data usage of the current day, battery drain levels in the
last hour, number of device unlocks, screen orientation changes, or number of photos taken during the day.

Since our focus is not on predicting engagement related to computed-mediated communication, we did not
compute any features regarding the sender-receiver relationship [33, 34]. In addition, we did not compute features
related to the content of the notification [13, 33], since our aim was to create a model that would be content-
independent. The feature extraction resulted into a table with 78,930 instances (one instance per notification).
Each instance contained a user ID, the features, and the ground truth. This table served as input to the subsequent
analyses steps.

5.3 Model Choice
To model the likelihood that a participant will open and engage with the recommended content, we use a machine
learning approach [16, 35]. Machine learning models are able to leverage complex interactions (both linear
and non-linear) between the available features and the ground truth target variable. Through the appropriate
choice of our learning model, we are able to take such complex interactions into account when assessing feature
importance (see below).
As learning model we used XGBoost [9]. XGBoost is a state-of-the-art gradient boosting regression tree

algorithm that has successfully been used in several application domains. It is fast, scales beyond billions of
examples, and yields state-of-the-art accuracies in standard classification benchmarks and challenges [9]. It belongs
to the family of ensemble trees, sharing desirable properties with them, such as improved generalizability [16],
robustness to different feature scales and distributions [6], and a principled methodology to deal with large
numbers of features and assess their importance [5]. In pre-analysis, we saw that the default parameters yielded
good performance, as compared to other state-of-the-art classifiers such as logistic regression [16] (Precision :
0.060, F1Score : 0.109) and Random Forests [5] (Precision : 0.061, F1Score : 0.108). We used sklearn [41] version
0.17.1 and its wrapper for the XGBoost Python package2, version 0.4a30.

2http://xgboost.readthedocs.io
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5.4 Evaluation Procedure
For each evaluation, we use a 10-fold cross-validation schema [16] to split the data set into training and test sets,
ensuring that a participant does not get split across folds. Hence, the data from each participant is never used in
both the training and testing sets and the classifier cannot exploit user-specific features or behaviors to improve
its predictions.
As primary evaluation metric we use the average F1 score over the test folds [35]. In our case, precision

measures the percentage of time that the model accurately predicts that the user will click on the recommended
content from all the instances where participants clicked on the content. Recall measures the percentage of
positive instances that were captured by our model. The F1 score is the harmonic mean of precision and recall [35].
Given the rationale to improve the success rate of engagement attempts, precision, at first glance, would be

the most important metric: the higher the precision, the more accurately our model would predict when the user
will engage with one of the suggested content items. For products, increased precision may directly translate into
higher engagement and revenue. However, optimizing for precision typically lowers recall, which in our case can
lead to an algorithm which cannot identify enough opportune moments anymore. Thus, it is important to also
consider recall in the evaluation process. Depending on the application, the algorithm might not be given a lot of
time to find opportune moments. In such a case, the algorithm might arrive to the end of the given time frame
without having found an opportune moment if recall is too low. As we do not have an informed criterion on the
relative importance of precision and recall without knowing the details of the target product or service, we used
the F1 score as primary evaluation metric, balancing both precision and recall.

Another factor we had to consider was the different levels of participation and engagement across all partici-
pants: some participants just opened the minimum number of notifications (n = 20), while other participants
provided data for more than 200 notifications each. If we learned a model without any further consideration on
the number of sent notifications per participant, our model could be biased towards participants who received
higher volumes of notifications. Hence, we normalized all observations per participant and class, so that their
sum would be one. We apply these weights in training, by multiplying the classifier loss accordingly [16].

5.5 Classifier Tuning
XGBoost typically requires little effort to tune for a good performance. In pre-analysis, we saw that the only two
parameters that had a non-negligible effect were scale_pos_weight, which is used to penalize misclassifications
of one of the classes, and max_depth, which defines the maximum depth of the trees. To select the appropriate
values for these two parameters, we did a grid search.

For scale_pos_weight, we tested the values [0.75, 0.9, 1.0, 1.1, 1.25] as multipliers for the expected presence of
the weighted positive ground truth. For max_depth, we tested [3, 4, 5, 6] tree splits. The grid search iterated over all
possible combinations of the two sets, computing their performance on the training set via 5-fold cross-validation.

Note that, by optimizing scale_pos_weight, we are learning and tuning the importance of the positive class in
our problem in order to maximize performance. The optimal performance was achieved with a scale_pos_weight
of 1.1 and a max_depth of 3.

5.6 Baseline Selection
Regarding the baseline, we compared the performance of different strategies of the DummyClassifier available
in scikit-learn:

• constant, i.e., setting all predictions to {1};
• stratified, i.e., where predictions are generated randomly by respecting the probability of each class; and
• uniform, i.e., where predictions are generated uniformly at random.
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These strategies approximate the status quo, where product/service owners do not typically use real-time
intelligence to determine the timing of sending the notifications. The strategies performed almost equally well,
achieving a precision between 4.3% and 4.4%. Because of the higher recall value, the constant strategy was found
to yield a higher F1 score than other strategies. Considering a precision of 4.3% and a recall of 100%, the baseline
for the F1 score equates to 0.082. In our results, besides reporting precision, F1 scores, and confusion matrices, we
compute the lift as the percentage of relative increase between the performance of the learned classifiers and this
baseline.

5.7 Feature Preprocessing and Cleaning
We preprocessed the features under consideration before they were provided as input to the classifier. Feature
cleaning is a standard procedure in machine learning to, for instance, deal with missing values or to convert
categorical variables into numerical values. In our case, categorical variables such as ringer mode (one value
from {“normal”, “vibrate”, “silent”}) were converted to numerical variables using the so-called one-hot encoding
strategy [35]. We also found some missing values in our data due to temporally unresponsive resources or the
fact that a feature represented the time since an action that had not yet been observed. In some cases, we were
able to infer the value of the missing variable. For example, when launching the study app for the first time,
the screen can be assumed to be on. For the rest of the cases, we performed distribution-based imputation by
randomly sampling from the available variable values [16].

6 RESULTS
First, we report the performance of an XGBoost classifier built using all the 197 features from the previously
described 5 groups. The classifier achieves an F1 score of 0.113. Table 1 shows the corresponding confusion
matrix.

Predict No Predict Yes
No Engagement 63,304 12,259
Engagement 2,429 938

Table 1. Confusion matrix using all features as input.

If we had used the output of our algorithm to better time when to send notifications, 938 of 13,197 attempts
would have led to conversions (Precision : 0.071), which constitutes of lift of 66.6% over the baseline precision of
0.043. If used to capture as many opportune moments as possible while reducing the number of engagement
attempts, 938 of 3,367 total conversions would have been captured (Recall : 0.279) while only making 13,197
(16.7%) of the 78,930 engagement attempts. To ensure that the classifier would still be able to predict a sufficient
number of opportune moments for each user, we investigated the fraction of positive predictions for each
participants individually. None of the participants had fewer than 1% positive predictions and only 82 participants
had fewer than 10% positive predictions. In summary, these results indicate that the algorithm can significantly
increase the conversion rate of engagement attempts, but it does not cut off users from ever receiving notifications
–which is important for this use case, where we try to find the sweet spot between maximizing engagement and
minimizing disruption.

6.1 Adapting Positive-Prediction Frequencies to the User
We now turn our attention to the participants’ conversion behavior during the study. Figure 4 visualizes the
number of positive predictions (made by the classifier that used all features) for each user, alongside the number
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of their actual conversions. We see that a notable fraction of the participants rarely or never clicked on any of the
recommended content. In particular, 80 participants never engaged with any of the suggested contents and 68
participants engaged with suggested content only once. This phenomenon can be expected in real scenarios too,
since some users may frequently ignore proactive recommendations from certain products and services. The
classifier, however, does not appear to adapt to this. In the context of some products and services, it might be
feasible and beneficial to reduce the number of notifications sent to participants who rarely or never convert,
to avoid churn, such as uninstalls of the corresponding app, and/or to increase satisfaction. In this section, we
analyze the value of taking the participants’ past behavior regarding conversions into account when predicting
future conversions.

Fig. 4. Actual conversions (blue) overlaid by positive prediction (red). The figure visualizes that there is little adjustment by
the model to the general amount of conversions of the participants.

To this end, we compute a new group of features called PastActions which models the participants’ past
interactions with the suggested content. The PastActions group consists of 4 features: (1) the mean conversion
rate per participant, i.e., the number of conversions divided by the number of notifications sent until this point,
prior to each notification. This feature approximates the participant’s general openness to the content that the
app recommended; (2) the response to the last instance of recommended content; (3) a slow rolling mean –via
exponential smoothing with exponent of 0.05– of the participant’s conversions to capture the participant’s
behavior in the past few days; and (4) a fast rolling mean –with exponent of 0.2– to capture the participant’s
response to the last few notifications. The last three features in this group model the participant’s recent reactions
to the recommended content in order to take into account that his/her interest in the suggested content might
vary over time.

We then built an XGBoost classifier adding the 4 PastActions features to the 197 features in the previously
described groups. Again, we used grid search to find the optimal parameters. The best performance was achieved
with a scale_pos_weight of 1.0 and a max_depth of 5. The performance of the resulting classifier was improved
an order of magnitude, achieving an F1 score of 0.311. Table 2 shows the confusion matrix.

Predict No Predict Yes
No Engagement 69.051 6,512
Engagement 1,548 1,819

Table 2. Confusion matrix, including the PastActions feature group.
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If we had used the output of this algorithm to better time attempts to engage users, 1,819 of 8,331 attempts
would have led to conversions (Precision : 0.218), which constitutes over a 5-fold lift over the baseline precision
of 0.043. If used to capture as many opportune moments as possible while reducing the number of engagement
attempts, 1,819 of 3,367 total conversions would have been captured (Recall : 0.540), while only making 8,331
(10.6%) of the 78,930 engagement attempts.
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Fig. 5. Actual conversions (blue) overlaid by positive prediction (red). The number positive predictions of the optimized
model is much closer to the number of conversions of the respective participants.

As shown in Figure 5, this new classifier adjusts the number of positive predictions much better to the number
of actual conversions. To again ensure that the classifier would still be able to predict a sufficient number of
opportune moments for each user, we investigated the fraction of positive predictions for each participant
individually. 45 of the participants had fewer than 1% positive predictions and 225 participants had fewer than
10% positive predictions. This shows that if the algorithm would be deployed in this form, a fraction (in our case,
about 15% of the participants) would almost never be predicted to be open for engagement. Thus, adding features
reflecting past openness for suggested content may result in a classifier that for some fraction of the user base
never predicts any opportune moments. Depending on the use case, this may or may not be a desirable property.

6.2 Feature Importance
In order to shed light on the role that different factors play to predict conversions to recommended content, we
investigate the top-30 features ranked by their contribution to the model as reported by the XGBoost classifier
(see Table 3). Below, we report significant correlations between the features and the ground truth. To compute
correlations, we used Spearman’s Rank Correlation, as most feature values were not normally distributed. Note
that the importance of a feature does not necessarily imply a direct correlation with the ground truth. Given
the non-linearity of the model, a variable may serve as mediator and gain prediction power only through its
combination with other variables.

Communication. Seven features related to recent communication activity are amongst the top predictors.
Higher conversion rates directly correlate with the more time had passed since the last outgoing phone call
(r = 0.017, p < 0.001) or the last incoming phone call (r = 0.008, p < 0.05), the less time had passed since the last
SMS was received (r = −0.011, p < 0.01), and the lower the volume of notifications received so far during that
day (r = −.013, p < 0.001).
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Importance Feature
0.0365 Usage_Ringer_MinSinceChanged
0.0350 Context_HourOfDay
0.0274 Comm_PhoneCall_PickedUp_MinSinceLast
0.0259 Context_Noise_Last
0.0259 Comm_PhoneCall_Outgoing_MinSinceLast
0.0244 Comm_PhoneCall_MinSinceLast
0.0228 Comm_Notif_Posted_MinSinceLast
0.0228 Comm_Sms_Received_MinSinceLast
0.0198 Context_MidpointOfNight_HoursSinceLast
0.0198 Comm_PhoneCall_Incoming_MinSinceLast
0.0183 Usage_App_MinSinceLast
0.0183 Usage_NotifCenter_MinSinceLast
0.0183 Context_SemLoc_Work_Distance
0.0167 Demog_Age
0.0167 Comm_Notif_Posted_D_Count
0.0167 Usage_Screen_MinSinceChanged
0.0152 Usage_Data_Tx_D_Sum
0.0152 Context_Acc_Avg_60_Mad
0.0137 Usage_Screen_Unlocked_MinSinceLast
0.0137 Usage_BattDrainB_D_Mad
0.0122 Context_Acc_Max_60_Q50
0.0122 Usage_BattDrainB_D_Q50
0.0122 Context_Noise_D_Q50
0.0122 Context_MidpointOfNightHour
0.0122 Context_SemLoc_D_Percentage_Home
0.0122 Context_Loc_D_Sum_Distance
0.0122 Context_Light_D_Mad
0.0122 Phone_BattB_Last
0.0122 Context_UserAct_P_Last
0.0122 Context_Noise_60_Q50

Table 3. Top-30 most important features as reported by the XGBoost classifier. The features are named systematically: the
first string (e.g. Context indicates the group that this feature belongs to; the second string (e.g., Noise) indicates the sensor
from which the feature was computed; the strings Last, 60, and D indicate the time horizon that this feature models, namely
the current moment, the last hour, or the current day (since 5am); the final suffixes indicate the type of feature, such as
last-observed value (Last), minutes since the last occurrence (MinSinceLast), or lower quartile of the observed values in the
five time span (Q25).

Context. Of the 30 most-predictive features, 13 belong to the Context group. Higher conversion rates correlate
with higher the fraction of time spent at home during the day so far (r = 0.034, p < 0.001), increased distance to
work (r = 0.022, p < 0.001), and larger distances traveled during the day so far (r = 0.010, p < 0.01), Regarding
motion activity, higher conversion rates correlate with higher median of spikes in the level of physical activity
during the last 60 minutes (r = 0.017, p < 0.001) and higher variance in the level of physical activity during the
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last 60 minutes, as reported by the acceleration sensor (r = 0.034, p < 0.001). Regarding ambient noise and light
levels, higher conversion rates correlate with higher noise levels (r = 0.013, p < 0.001), higher median levels of
noise during the day so far (r = 0.025, p < 0.001), higher median levels of noise during the last hour (r = 0.016,
p < 0.001), and less variance in the ambient light level recorded by the phone so far (r = −0.043, p < 0.01).

With respect to the time of the day, the later the notification was posted during the day, the higher the
conversion rates (r = 0.011, p < 0.01). An inspection of the histograms revealed that conversion rates are largely
the same, and only lower during the early hours of the day (7-8 am). In addition, inspired by [36], we computed
the time since the midpoint of the night, that is, when a device was unused between 11pm and 7am, we consider
3am to be the midpoint of the night. We found a positive correlation between the time since the midpoint of the
night and the openness for engagement (r = 0.008, p < 0.05). An inspection of the histograms revealed a peak in
openness to engagement from 6 to 7 hours after the midpoint of night. Furthermore, the earlier the midpoint of
the night, the higher the conversion probability (r = 0.033, p < 0.001).
Finally, higher conversion rates correlate with lower certainty values reported by Google’s Recognition API

with respect to the estimate activity prior to posting an experience-sampling notification (r = −0.024, p < 0.01).
We hypothesize that activities, such as driving, cycling, walking, are in general more difficult to predict with high
certainty than the phone being still. Hence, we assume that the presence of difficult-to-predict activities correlate
with higher openness for engagement.

Demographics. Age turned out to be amongst the top predictors. We found a positive correlation between
age and conversion rates (r = 0.044, p < 0.001), i.e., the older the participant, the more likely to click on the
recommended content.

Phone State. One feature describing the status of the phone was amongst the top predictors: participants were
more likely to convert the higher the remaining battery charge was (r = 0.008, p < 0.05).

Usage Patterns. Eight features related to usage of the phone were amongst the top-30 features. Participants
were more likely to convert the less time had passed: since the last launch of an app on their phone (r = −0.065,
p < 0.001), since the last access the notification center (r = −0.035, p < 0.001), since the last change of the screen
status (turning the screen on, off, or unlocking it), (r = −0.063, p < 0.001), and since the last unlock of the screen
(r = −0.069, p < 0.001). Furthermore, participants were more likely to convert the more data the phone had
transmitted during the day so far (r = 0.009, p < 0.05), the higher the variance of the battery drain had been
during the day so far (r = 0.008, p < 0.05), and the higher the median battery drain had been during the day so
far (r = 0.015, p < 0.001).

7 DISCUSSION
The study results show that features from all five groups of variables (communication activity, user context,
demographics, the state of the phone, and user activity) were useful for predicting whether a participant would
engage with suggested content. In the following, we discuss the most predictive features and the feasibility to
compute them on the two major smartphone operating systems: Android and iOS.

Communication. Features related to communication activity were amongst the lower half of the most predictive
features. The analysis of the individual features from this group reveals a direct correlation between engagement
and incoming phone calls & incoming notifications. This indicates that our participants were more likely to
engage when there was less incoming communication. This finding corroborates previous work by Pielot et
al. [47], who found that boredom –a state with desires for stimuli– correlates with less incoming communication
as well. Since most of these features are computed from events obtained through callback functions, the battery
impact is negligible. Accessing them, however, is challenging. On Android, special permissions are required to
access phone call logs, SMS logs, and notification events. On iOS, this is not possible at all. Thus, this feature
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group makes most sense for communication products and services, where communication activity can be inferred
through the product itself.

Context - Hour of the Day. Features related to the user’s context were the most important to predict engagement.
Almost half of the top-30 features belong to this group. With respect to the time, we found that the hour of the
day was a good predictor of openness for engagement: caused by a significant drop of openness to engagement
in the morning hours (7-8am). Otherwise, we found that the time of the day had relatively little influence, which
supports the finding byWestermann et al. [57], where the timing of advertisement notifications had no statistically
significant effect. Furthermore, we found that the users biological clock, represented by the time (in hours) since
the midpoint of the night was a strong predictor: the earlier the midpoint of the night, and the more time had
passed since said midpoint, the higher the openness for engagement. This is in line with findings by Murnane et
al. [36] where the use of entertainment apps was higher compared to the use of productivity apps during the
“evening” in relation to the personal biorhythm. The hour of the day is usually available through the system clock
of any OS and does not require any special permission.

Context - Location. With respect to location, analyses of the direct correlations between location-derived
features and the ground truth variable revealed that conversions were more likely to take place at home or when
traveling compared to being close to work. This corroborates findings by Sarker et al. [52], where participants were
less open to health intervention alerts at work. The use of semantic location as a feature is a borderline decision.
If implemented via location sensors, it requires permission on iOS and Android. Users may react cautiously if an
application asks for location without having a clear need for it. Alternative implementations can be found that,
e.g., can approximate important places (work, home) from the WiFi stations or cell towers the phones see nearby,
which is possible to implement at least on Android with possibly less controversial permissions.

Context - Acceleration Levels. Higher levels of motion during the last hour, as measured by the phone’s
accelerometer, were positively correlated with openness for engagement. Previous work only reported findings
related to the concurrent physical motion activity, showing that it correlates with less opportune moments
[33, 49, 52]. Given these previous findings and our finding that the most predictive motion-related features do
not indicate activity at the moment of posting the notification, but during the last hour, motion-related features
might allow to capture opportune moments between physical activities [18] or simply indicate that the phone
has been used recently. Motion sensors can be accessed on Android and iOS without special permissions. Battery
drain can be kept at reasonable levels by adjusting the sample rate (e.g., 15 seconds every 10 minutes).

Context - Ambient Noise. Higher noise levels at the time of the notification and during the day so far were
indicating for openness for engagement. The role of ambient noise level hasn’t been studied much in related
work and was not found to be indicative of a user’s responsiveness to notifications [33] or how immersed people
are into their phones [32]. Our results indicate that quiet environments and quiet days indicate less opportune
moments for engagement. Both, Android and iOS allow to obtain noise levels via the built-in microphone, which
can be accesses if the user grants the permission to record audio. Again, this approach requires a conservative
sampling strategy to limit battery drain. The nature of the permission, however, makes it unlikely that these
features are feasible in practice.

Context - Ambient Light. More stable light conditions during the day so far correlated with higher likelihood
to engage with suggested content. Light values reported by the mobile phone sensor are most likely to be
stable if the ambient light is artificial, if it is dark, or if the phone is covered, e.g. from resting in a pocket.
Previous work reports no conclusive insights related to ambient light. One general theme emerging from these
correlations is an indication that being at home in the evening constitutes a context in which people are likely to
convert to suggested content. This findings are in line with recently-reported findings related to boredom [47],
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alertness [1, 36], engagement [32], and ritualistic phone use [17]. The light sensor can be accessed without
special permissions on Android, and the light-related features can be realized with a battery-conserving sampling
strategy.

Demographics. The participants’ age was found to be correlated with openness to engagement: participants
who were older were slightly more open to the suggested content. Previous work [47] found that participants in
their 30 were less prone to boredom than participants in their 20s and 40s. The difference in the results may be
explained by the different demographics: the participants of the study presented in this article were older on
average (M = 37.85 compared to M = 31.0) and therefore had comparably more participants in age groups older
than 30-39. Many products and services won’t have access to demographics. However, there is still a good share
of applications who collects or has access to basic demographic information, e.g., when working with profiles or
when using logins of social networks which may disclose this information.

Phone state. One feature describing the status of the phone made it into the list of the top predictors. Participants
were more open for engagement the more the battery was charged. This finding has not been brought up in
related work. One explanation might be that in a low-battery situation, people are less likely to engage into
non-targeted behavior with their mobile phone, to not risk running out of battery. The battery level can be
obtained without explicit permission on Android and iOS. Beyond the battery level, Android allows to capture
further phone states, such as the ringer mode, which can be useful if products decide to consciously only attempt
to engage users that do not have their phone in silent mode.

Usage. Eight features related to phone usage were amongst the top predictors. Features derived from screen
use, app launches, and access to the notification center indicate that openness for engagement is higher if the
user has recently interacted with the phone. Additionally, higher data transmission rates and higher battery
drain were indicative of openness for engagement as well. These findings are inline with previous work, which
found that general app use, with the exception of communication apps, predicts phases of boredom [47] and
stimulation-seeking behavior [17]. Both, Android and iOS allow to obtain data related to battery drain and data
transmission rates. iOS allows to learn whether the screen is unlocked, whereas Android allows to register to
callbacks that are called when the screen is turned on, off, or unlocked. All of this information is available without
special permissions. App launches can be tracked on Android OS with a special permission. When the study was
taking place, the majority of the phones still ran a version of Android OS that allows to register which application
exactly is in the foreground. In newer versions, access has been more restricted so that an app can only know
whether the launcher or another app is in foreground – which is sufficient to implement the app-related feature
from the top predictors. Android further allows to register applications as accessibility service, which allows to
track, amongst many other things, interactions with the notification center, as well as the name of the application
in foreground. However, giving accessibility service access requires explicit action by the user and is highly
unlikely to work with a product. All of these features can be implemented in a battery-preserving fashion.

Past Behavior. Dramatic increases in the classification performance were achieved by including features that
model recent and past behavior related to the suggested content. In general, the more frequently participants had
opened recommended content in the recent past, the more likely they were to engage with it in the future. Our
results demonstrate that these features are a powerful means to match the frequency of positive predictions (i.e.,
predicting that a participant would be open for recommendations) with the frequency of actual conversions. Past
behavior related features can be computed for every product or service that keeps track of the reactions of the
users to past engagement attempts.

Limitations of the Study. One limitation of our study springs from the design choice of not having a direct
link between notification and content. The study shows that phone use can predict whether people will interact
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with unknown content after they have responded to a notification. Thus, the model was trained to predict
opportune moments for engaging users, but it did not consider the notification itself and its content. Whether
users finally engage with an app should depend on many more factors than the timing of the engagement
notification. Furthermore, responding to a minimum number of notifications was incentivized, which in a real
context would not be the case. The findings may therefore not generalize situations, where the notification
itself contains the content, as the user can already factor in the content to decide whether to engage or not.
The proposed model is more conservative in the sense that the intelligent system will not take into account the
propensity of the user to the content itself.

8 IMPLICATIONS
As stated earlier, the goal of this research is to inform the development of an intelligent system for proactive
content delivery that finds a balance between (1) reducing the number of unwanted interruptions while (2)
increasing conversion rates of engagement attempts to be attractive to product owners. In this section we present
two implications that can be derived from the results of our study.

8.1 Optimizing the Timing of Engagement Attempts
If we had used our classifier in the study as an intelligent engagement system –sending notifications only when
our system predicted that the user would engage– conversion rates would have been 7.1%. While this number
in isolation may not seem impressive, it constitutes an increase of 66.6% over the baseline conversion rate of
4.3%. For products and services, an increase of 66.6% in engagement from notification campaigns can result into
a significant increase in revenue, allowing to easily justify the introduction of such an intelligent engagement
system from a business perspective.

One limitation of the classifier is that it only would have recalled 27.9% of the opportune moments. A product
would need to give each user-engagement campaign enough time so that its users encounter a sufficient number
of opportune moments. For example, given a recall of 0.279, the user would have to experience 10 or more
opportune moments for the cumulative probability to exceed 95% to recall at least one opportune moment. Since
a number of opportune moments cannot be guaranteed, products and services should employ a timeout, i.e.,
handling the notification in a different way if no opportune moment has been found within the permitted time
frame. Depending on the focus, the system could either post the notification when it times or simply abandon
the engagement attempt.
The former strategy results into campaigns where engagement attempts are less likely to occur in moments

when users are not paying attention to their phone or otherwise occupied. The second strategy results into
campaigns where the notification volume is reduced for users who have not shown any interested in the product.
Both strategies have the potential to reduce churn (e.g., through disabling notifications or uninstalling the app)
and hence, increase revenue and customer satisfaction in the long run. In an ideal scenario, product owners could
achieve a higher absolute number of conversions while reducing the amount of unwanted engagement attempts.

8.2 Reducing Unwanted Interruptions through Past-Behavior Modeling
While it may not be too surprising that past behavior predicts future behavior in this context, our finding of
a hypothetical success rate of 21.8% shows how powerful observing past behavior is compared to modeling
openness for engagement from other phone use patterns. This stresses the importance of respecting users who
have repeatedly ignored suggested content in the past. Adapting the notification frequency to past behavior has
huge positive impacts on the prediction performance, while maintaining a high recall (54.0%). The positive side
of the predictive power of past behavior is that it does not require to capture mobile sensor data or any personal
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data that would require explicit consent and could have potential privacy implications. Moreover, the use of
rolling averages allows to adapt to changes in the recent conversion behavior of specific users.
One challenge when employing past behavior as a feature is the cold start problem, e.g., when there are new

users or new content offerings there is no data about past behavior. Depending on the frequency of engagement
campaigns that a product or service is willing to undertake, building up a reliable set of features related to past
behavior could take weeks or months. In these cases, an intelligent notification delivery system could fall back
to a model without past behavior features until a sufficient number of data points have been collected for the
respective user.

A second challenge is that the use of PastAction features requires product owners to accept the reality that not
all users can be engaged. Roughly one third of the participants in our study were never or only once predicted to
be open for engagement. Thus, the use of past behavior is particularly helpful if products and services are willing
to emphasize the improvement of user experience and the decrease churn from unwanted interruptions over
attempts to generate conversions at any cost.

9 CONCLUSIONS
We conducted a field study with 337 participants in which, for an average of 4 weeks, they installed a study
application onto their primary mobile phones. The participants considered the primary purpose of the study to
self-report their emotions to a notification-triggered mini questionnaire. In reality, we were interested whether
they would voluntarily engage with content suggested at the bottom of those questionnaires.

We show that features derived from data collected from the mobile phone allow to train a classifier that predicts
– at the time of posting a non-specific notification – whether participants will engage with suggested content
that is offered by the notification-sending app. The classifier achieves a 66.6% higher precision than the baseline.
Furthermore, we show how modeling past interest with the suggested content can be used significantly increase
the precision 5 times over the baseline, while avoiding failed engagement attempts of about one third of the
participants.
We describe how many of the most predictive features can be derived from popular smartphones operating

systems with reasonable impact on battery life and without requiring explicit permissions. We also discuss how
such a classifier could be used in products to increase conversion rates, improve user experience, and lower churn
by reducing undesired interruptions.
Future work includes (1) testing to which degree the performance that we achieved in this study can be

achieved in a product or service that uses notifications to engage its users; (2) exploring the role of the content
on the prediction performance; and (3) investigating the performance on an individual level to better account for
the fact that many individuals will not be open to certain types of content, no matter how well the engagement
attempt is timed.
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