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ABSTRACT
We contribute evidence to which extent sensor- and contex-
tual information available on mobile phones allow to predict
whether a user would pick up a call or not. Using an app
publicly available for Android phones, we logged anonymous
data from 31311 calls of 418 different users. The data shows
that information easily available in mobile phones, such as
the time since the last call, the time since the last ringer
mode change, or the device posture, can predict call avail-
ability with an accuracy of 83.2% (Kappa = .646). Person-
alized models can increase the accuracy to 87% on average.
Features related to when the user was last active turned out
to be strong predictors. This shows that simple contextual
cues approximating user activity are worthwhile investigat-
ing when designing context-aware ubiquitous communication
systems.
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INTRODUCTION
Incoming mobile phone calls aren’t always on time. Previous
work shows that about one third of all calls are missed [2, 18].
Prominent reasons are that users don’t hear the phone, cannot
pick up the call for social reasons (e.g., being in a meeting), or
prefer to focus on other activities, such as sleeping or playing
games [18].

In our recent work [13] on monitoring the effect of mobile
phone, we argued that providing better management of the
expectations towards responsiveness by communicating re-
cipient (non-)availability is one of the most important strate-
gies in lowering the severity of interruptions in computer-
mediated communication. However, how to automatically
communicate (non)availability has not yet been shown.

Previous research has explored the concept of availability in
two ways: first, learning through subjective feedback, what
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Figure 1. The Silencer’s main view, and showing a “toast” message right
after having silenced the call.

affects a user’s availability to phone calls [4, 5, 11, 20] – with
the goal of understanding which contextual factors are strong
predictors for call availability; and second, predicting inter-
ruptibility through sensors and other information availability
on ubiquitous devices in the context of interruptions by peo-
ple, emails, messengers, or phone notifications [1, 6, 9, 10,
14, 15].

The aim of this work is to investigate to what extent sensor-
and contextual information available on mobile and ubiqui-
tous devices can predict availability to phone calls. We report
from a large-scale study, where we published a phone-call
handing app called Silencer on Google Play. Via this app, we
collected data on how 418 users handled 31311 calls, along-
side contextual information available through the phone it-
self. The contribution of this note is three-fold:

1. the first validation of previous work on call availability pre-
diction in the large, i.e., in a natural setting with hundreds
of users from a diverse sample.

2. evidence that features extracted from contextual informa-
tion and common sensors in mobile phones achieve re-
spectable accuracy (accuracy = 83.2%, Kappa = .646) in
predicting call availability.

3. evidence that personalized models can increase accuracy to
beyond 87.0% (Kappa = .640).

RELATED WORK
Interruptibility has been extensively studied for personal in-
terruptions [9], emails [10], phone notifications [6, 15], IM



[1], and mobile messaging [14]. These studies show that it is
possible to use sensors and contextual information to estimate
whether a user will be available for communication attempts
through these channels.

With respect to phone calls, De Guzman et al. [5] found in
a 4-week diary study with 13 participants that, before mak-
ing a call, people desire to know detailed contextual informa-
tion, including location, time, physical, social, and emotional
availability, and current activity. Knittel et al. [11] surveyed
132 phones users and found that people are only willing to
share some contextual information, such as current location,
current activity, or presence of appointments.

What contextual factors matter for call receivers in deciding
whether to take a call has been studied as well:

Danninger et al. [4] conducted a pilot study, where 4 lab col-
leagues frequently responded to experience-sampling ques-
tionnaires administrated via their PC. They found that that lo-
cation, time, activity, presence of others, level of engagement
and importance & urgency of the current activity are amongst
the features that matter most.

Ter Hofte [20] conducted a one-week experience-sampling
study with 10 colleagues. The questions focused on current
activity and presence of other people, and whether the par-
ticipants would be taking a call in this situation. Trained on
the basis of 750 samples, a model could predict with 63.9%
accuracy if a person would report to be available for a call.

Horvitz et al. [8] explored to what extent meeting details,
such as meeting duration, subject, location, or organizer, can
predict the cost of interruptions from phone calls. Informal
tests with 2 colleagues over 4 months indicate that the system
performed well.

One of the most closely related works is by Rosenthal et al.
[16]. On the Android phones of 20 students, they logged fea-
tures identifying context (e.g., location, time of day, ...) and
importance of the alert (e.g., whether the contacting person is
in the favorites list or how often this person had contacted the
user in the past), and used experience sampling to learn the
user’s preferences regarding whether the phone should have
been muted. In a two-week follow-up study, they tested the
model and automatically muted the phone. 13 of 19 users
reported to be satisfied with the classification.

Recent work by Boehmer et al. [2] presents a novel UI for
handling interrupting calls more smoothly when the user is
active in another app: instead of switching to the full-screen
call UI, call-handling buttons are displayed on the screen cor-
ners as an overlay, which allows people to finish their tasks in
the current app.

In summary, most studies on predicting availability were done
with only 2 - 20 participants – often recruited amongst univer-
sity students or co-researchers. Further, contextual informa-
tion and ground truth were mostly established from subjec-
tive feedback, which humans cannot always assess properly.
What is missing is a study with a larger and more represen-
tative sample, that uses objective data as ground truth and for
approximating the user context.

METHOD
To investigate predicting availability to phone calls on mobile
phones, we conducted a large-scale in-the-wild study [7, 12,
17]. That is, we published a call-handling application called
Silencer on Google Play and studied actual phone calls. For
each call, we logged how the user handled it, and the current
context of the user, approximated by information and sensor
data available to the mobile phone.

The Silencer Application
The Silencer is available for free on Google Play for Android
phones. It allows users to temporarily mute the phone ringer
on incoming calls by simply shaking the phone. Figure 1
shows the main configuration view and a message telling that
the call has been silenced.

The app was published end of 2012 and, by the time of writ-
ing (May 2014), has been downloaded 14849 times from
Google Play. The study logger software was added in March
2014 with a major update. We added a paragraph informing
users that anonymous data will be collected to investigate the
call handing of the Silencer. Users had to manually agree to
the added permissions in order to update the application.

To avoid silencing the phone unintentionally, e.g. when run-
ning or driving in a car, the Silencer uses call-based shake-
sensitivity adaptation. During the first two seconds of each
call, the accelerometers simply record the level of accelera-
tion, but the call cannot yet be muted. The maximum accel-
eration observed during this period multiplied by 1.5 serves
as threshold. Only if the acceleration exceeds this threshold
after the calibration period, the phone is muted.

Data Collection
For each call, the app logged the following 15 features:

• the ringer mode and when it last changed,
• charging state and when the phone was last (un)plugged,
• the screen state (on/off) and when it last changed,
• the day of the week,
• the hour of the day,
• the proximity sensor (display covered/not covered),
• the pitch angle of the display,
• the level of acceleration right before the call,
• how often the same caller had called before,
• the time since the last call,
• whether the last call was picked up,
• whether the last call was silenced,
• and whether the user took this call (ground truth).

These features comprise those sensors and contextual infor-
mation related to calls and user activity that are easy to access
on Android phones without requiring excessive permissions
or computation.

To save battery, the application only monitors changes to the
ringer mode and the screen in the absence of a call, as it is



important to know the status of these sensors prior to the call.
All other used sensors are activated only on incoming calls.

Participants
Within a time-frame two months, we collected phone calls
from the phones of 418 distinct users. The phones reported
timezones from all around the world. 48 different locales
were reported, the five most frequent being: en-US (28.8%),
en-GB (12.9%), ja-JP (12.6%), de-DE (4.7%), and ar-AE
(4.4%). Hence, the participants represent a diverse sample of
Android users from a wide range of places around the world.

RESULTS
To clean the data, we initially removed those calls where it
was likely that the user simply had tested the application.
Thus, we excluded all calls that were received less than 3
hours after installation, and where strong acceleration forces
larger than 10G were observed in the 2-sec calibration phase.

The resulting data set contains 31311 calls. 19175 (61.2%)
of the calls were picked up, 8816 (28.2%) were missed, and
3320 (10.8%) were muted by shaking the Silencer and then
left ringing. These numbers are in line with previous findings
that about one third of all calls are missed [2, 18].

The median time interval between the first ring and picking
up the call was 8.0 seconds.

Classes and Classifier Selection
We consider the user available if the user picked up the in-
coming call, and unavailable if the user missed the call or
muted it. This allowed us to treat the problem as a simple
classification task with 19175 (61.2%) instances of available
and 12136 (38.8%) of unavailable.

We tested and empirically compared the performance of a
wide range of well-known classifiers that are available in
Weka1. For all tests, we used 80% of the data as training
set and 20% as test set. Thus, our results show how well the
model can predict availability from context that has not yet
been seen by the classifier. We obtained the best performance
with Random Forests [3], and thus used them throughout the
remaining analysis.

Classification Accuracy
With standard configuration seed = 1 and 10 trees, the Ran-
dom Forest model achieved an accuracy of 83.2%. As sug-
gested by Strobl et al. [19], we confirmed that varying the
configuration achieves similar results: between 82.77% and
84.03%. The Kappa statistic of .646 indicates that the classi-
fier performs 64.6% better than a random guess. As compar-
ison, using Naive Bayes as classifier achieves an accuracy of
69.2%. Table 1 shows the confusion matrix.

available unavailable ← classified as
3364 480 available
569 1849 unavailable

Table 1. Confusion Matrix for the classification.

1http://www.cs.waikato.ac.nz/ml/weka/

Table 2 shows detailed accuracy by class. Precision and re-
call indicate that the algorithm performs better for identify-
ing those instances where the model predicts available. From
an application perspective, this is desirable, as we consider it
worse if the system tells a caller that the receiver will pick up
the call, but in fact does not. With a precision of 85.5%, the
model will be correct roughly 5 out 6 tries when predicting
that a user will pick up a phone call with a given context.

Class Precision Recall ROC
available .855 .875 .899

unavailable .794 .765 .898
Table 2. Detailed accuracy by class.

We empirically tested randomly-selected subsets of the
ground truth data. With roughly 500 calls the model starts
to approach the 80% accuracy mark. However, our tests did
not reveal that the accuracy flattens out beyond any points.

Feature Ranking
To understand the importance of the individual features, we
ranked them using Weka’s “select attributes” facility. As fea-
ture evaluator, we used ClassifierSubsetEval, which “evalu-
ates attribute subsets on training data or a separate hold out
testing set. Uses a classifier to estimate the ‘merit’ of a set
of attributes.” As search method, we used GreedyStepwise,
which works by “traversing the space from one side to the
other and recording the order that attributes are selected.” The
feature evaluation used 10-fold cross validation.

Table 3 shows the generated average ranking of the features.
Average merit indicates the average loss of accuracy when
removing the given feature. Average rank indicates at what
rank the feature evaluation determined for the given feature
during each of the 10 folds.

Feature avg. rank avg. merit
Last ringer change (time) 1.0 −.074
Last screen change (time) 2.0 −.026
Screen status 3.6 −.018
Last (un)plugged (time) 5.4 −.014
Last call (time) 6.8 −.013
Activity / Acceleration 7.3 −.013
How often called by caller 7.6 −.017
Day of the week 9.4 −.012
Charger (un)plugged 10.0 −.012
Hour of the day 10.1 −.012
Ringer mode 11.4 −.011
Last call silenced 12.4 −.011
Pitch of phone 12.5 −.011
Screen (not) covered 13.0 −.011
Last call picked 14.1 −.011

Table 3. Ranking of the tested features.

All top-five features are an indication whether the user is or
has just been active with the phone. Ranks 6 to 10 further
introduce the relation to the caller and proxies to the current
activity. Thus, current activity and relationship to the caller
appear to be the strongest factors that can be best inferred
from standard phone sensors.

http://www.cs.waikato.ac.nz/ml/weka/


Since Random Forests sometimes performs better when re-
ducing the number of features, we tested removing low-
ranking features. A model built from the top-10 / top-5 fea-
tures achieved an accuracy of 81.41% / 79.62% respectively.
This indicates that even the bottom-5 features are still notably
contributing to the overall accuracy.

Personalized Models
Next, we explored the potential gain from personalizing the
model. We computed models for each users built from 10,
20, 30, ... 190 calls. If a user did not receive that many calls
during the study period, the data for this user was discarded.
For each of the personal models, we computed its accuracy
and the kappa value via 10-fold cross validation. With 50
calls, the personalized models, on average, started to outper-
form the generic model with an accuracy of 84.0%. With 120
calls, the personalized models exceeded the generic models
Kappa (.64) and clearly outperformed the generic model in
terms of accuracy 87.02%. This indicates that personalizing
the model is a vital approach to further increase accuracy.

DISCUSSION
Our data set shows that predicting availability from sensors
and device information is not only possible for personal in-
terruptions [9], instant messaging [1], and phone notifications
[15], but also for phone calls.

With an accuracy of 83.2% for the generic model and over
87.02% for the personalized models, our approach outper-
forms previous work [5], which reports 63.9% accuracy from
a model made from subjective in-situ feedback. Personal
models matching the generic model’s accuracy can be gen-
erated from as little as 50 calls. This shows that automati-
cally communicating non-availability, as proposed before to
manage expectations [13], is feasible.

Previous work [4, 5, 20] has suggested several hard-to-
measure features, such as the nature of the current activity,
for predicting availability to mobile phone calls. Our work
highlights that availability-prediction models with satisfying
accuracy can be built by relying on much simpler features.

The strongest predictors were those that approximate user ac-
tivity, either physical or with the phone, and approximation of
daily routines. This is in line with previous work [1, 5, 20],
which found that features related to user activity are strong
predictors of availability. Advancing prior work, we show
that phone sensors can be viable proxies for user activity.

Previous work also has shown that people desire to know a
wide range of contextual information before making a phone
call [4, 11]. However, sharing this information can raise pri-
vacy concerns and is not always desired [11]. Our findings
show that a more privacy-protected approach is feasible as
well: instead of sharing detailed information, such as the cur-
rent location, a service could simply share the prediction and
optionally the confidence of the prediction.

One open question is how to implement this service: contin-
uous prediction would currently be too battery intensive. Ob-
taining a prediction during a call or on request might be more
feasible, but would require an explicit trigger by the caller.

As for all large-scale studies, one limitation of the presented
work is the lack of control over the tasks [2]. Neither re-
searchers nor users control, e.g., how often and in what situa-
tions users received calls, and whether the measured reactions
align with the actual intent. For example, our data set may
be sparse on certain situations and users may at times have
reacted differently from how they felt. Nevertheless, by run-
ning the study in a naturalistic setting, we obtain data from
calls when they actually occur, and we forgo any bias arising
from inaccurate self-judgment.

The findings advance prior work in the following ways: com-
pared to Horvitz et al. [8], who explored to mute phones
according in meetings according to the details in the calen-
dar, our work covers a wider range of features and situa-
tions. Compared to Rosenthal et al. [16], we did not measure
whether users do not want to be interrupted, but whether they
would pick up a call. With respect to both works, our study
comprises a much larger and more diverse sample, which
yields to insights with comparably high ecological validity
and generalizability.

CONCLUSIONS
On the basis of a large-scale study with 418 phone users, we
show that monitoring 15 features on a mobile phone, which
approximate user activity and state, allow to predict with
83.2% accuracy if a person will pick up a call or not. When
computing individual models for users with more than 120
calls, those individual models achieved an accuracy of 87%.
It shows that the previously proposed approaches to automat-
ically predict availability for personal interaction, emails, no-
tifications, and messaging, can be applied to phone calls too.

The findings presented in this paper demonstrate the viability
of automated, lightweight call availability predictors for mo-
bile phones. In contrast to previously proposed solutions of
sharing detailed contextual information, this allows to share
availability information with potential callers in a privacy-
preserving way, as no detailed context information, such as
current location or recent call activity, has to be shared.

By restricting our investigation to simple features, we leave
room for future improvements, such as testing more com-
plex features, or investigating how to approximate hard-to-
measure features, such as “the importance of the current ac-
tivity”, as proposed in more human-centered approaches, in
automated ways.
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