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ABSTRACT

Social norm has it that people are expected to respond
to mobile phone messages quickly. We investigate how
attentive people really are and how timely they actu-
ally check and triage new messages throughout the day.
By collecting more than 55,000 messages from 42 mobile
phone users over the course of two weeks, we were able
to predict people’s attentiveness through their mobile
phone usage with close to 80% accuracy. We found that
people were attentive to messages 12.1 hours a day, i.e.
84.8 hours per week, and provide statistical evidence how
very short people’s inattentiveness lasts: in 75% of the
cases mobile phone users return to their attentive state
within 5 minutes. In this paper, we present a compre-
hensive analysis of attentiveness throughout each hour
of the day and show that intelligent notification deliv-
ery services, such as bounded deferral, can assume that
inattentiveness will be rare and subside quickly.
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BACKGROUND AND MOTIVIATION

Exchanging messages via SMS or over-the-top messen-
gers is one of the core use cases of mobile phones. For
example, in 2011 teenagers were found to exchange a
median number of 60 messages per day [9].

At the same time, people tend to expect responses to
their messages within minutes [3]. To not violate these
expectations, people need to be attentive to their phone,
which means to check and triage new messages quickly
after their arrival to decide how to act on them [11]. Pre-
vious work [2, 11, 13] has shown that, on average, people
do so within a few minutes. Therefore, people are often
forced to interrupt their current activity upon arrival
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of each new message. However, such interruptions have
negative effects, as people find it difficult to return to
the activity prior to the interruption [4, 8]. Hence, pre-
vious work has proposed different notification-delivery
strategies to minimize the impact of interruptions.

Horvitz et al. [7] proposed bounded deferral: if a user is
predicted to be busy, alerts are being held back until a
more suitable moment, but only for a maximum amount
of time. In the context of mobile phones, Fischer et al.
[6] found that opportune moments for delivering noti-
fications occur right after the user has finished a task,
such as writing a message. Previous work [10, 11, 12]
has explored the use of mobile phone sensors and us-
age patterns, such as the the user’s location or recency
of interactions, to automatically predict such opportune
moments.

However, bounded-deferral strategies may not work if
there are many long phases without opportune moments.
If the the algorithm delays messages for too long, it may
increase response times which in turn may lead to ex-
pectations being violated. If the maximum delay is too
little, messages may frequently be delivered when the
user is still occupied. Hence, bounded deferral will only
be an ideal strategy when users are typically attentive,
and when phases of inattentiveness are brief.

To see whether this is the case, we conducted a study
where we determined the attentiveness of mobile phone
users throughout the day. We used phone-usage data
consecutively acquired over two weeks from 42 mobile
phone users to infer attentiveness for each minute of the
day. The contribution of the study is three-fold:

e We confirm previous work that attentiveness can be
predicted from phone usage patterns, in our case with
almost 80% accuracy. In contrast to previous work,
our data set is much larger and also accounts for no-
tifications handled on other devices;

e While there is a common-sense opinion that people
are ‘always’ next to their phones, this work yields a
quantitative estimate: our participants were highly at-
tentive to mobile messages: 12.1 hours per day (more
than 75% of the time spent awake); and

e We show that times of inattentiveness are often very
short. In 50 / 75% of the cases, our participants re-
turned to a state of attentiveness within 2 / 5 minutes.



This data supports that bounded-deferral is a viable
strategy for the design of intelligent notification-delivery
systems that aim to reduce the interruption of notifica-
tions.

DATA COLLECTION

To collect the input for the model, we built an appara-
tus for data-collection. In July of 2014 it collected (1)
when a message arrived, (2) how fast the user attended
to it, and (3) contextual- and phone-usage data. We used
this data to train a machine-learning algorithm, where
the time until the user attended to messages served as
ground truth, while the contextual- and phone-usage
data served as features. Our data allowed us to com-
pute the state of those features for each moment of the
data collection phase. Once trained, we applied the algo-
rithm to the contextual- and phone-usage data for each
minute of the study. Thus, we filled the gaps for all those
moments where users did not receive any messages: for
each minute, we obtained a prediction of how fast a user
would attend to a message at this time.

Participants

The majority of the participants were recruited through
a mailing list of a German university and a mailing list to
announce user studies hosted by a large Spanish IT com-
pany. Hence, the sample represents German students
and Spanish people with at least some basic interest in
new technologies. 42 participants joined the study and
left the application running for at least two weeks. Pro-
viding demographic information was voluntary. 45.2%
of the participants reported to be male, 23.8% to be fe-
male, and 31% did not report their gender. The mean
reported age was 28.7 years (SD = 5.9).

Measures

Once the probe was installed and configured, a back-
ground service registered several sensor and event listen-
ers, and started sending all events to a data server. This
included the status of the screen (on/off), data from the
proximity sensor, access to the notification center, the
ringer mode, the app in foreground, and the incoming
notifications.

To learn about incoming messages, we used the Notifica-
tionListenerService, which has been recently introduced
with Android 4.3. Whenever a new message creates a
notification, the listener fires a notification-posted event,
which conveys the app to which the notification belongs.
In contrast to previously proposed approaches to study
notification activity, such as the AccessibilityService (e.g.
[13]), the NotificationListenerService also fires an event
when a notification is removed, which includes instances
where a message has been read on a different device. We
created a filter that only kept notifications from messen-
gers, and ignored all other types of notifications. Fur-
ther, we filtered out notifications coming in while the
corresponding app was in the foreground.

Procedure

To join the study, people had to download our app from
Google Play. When first launched, it presented an in-
formed consent form, which explained the background
of the study, and what information would be collected.
If consenting with the terms, the app helped the partic-
ipant to go to the settings to grant the application spe-
cial access to incoming notifications, and subsequently
began logging notification-related activity. Participants
received a 20 EUR Amazon gift card as compensation.

RESULTS
Over the course of two weeks we collected 55,824 mes-
sages from 42 participants. Figure 1 shows the number
of messages received in total during the different hours
of the day.
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Figure 1. Total number of notifications per hour of the
day. For example, ’0’ indicates notifications arrived be-
tween 0:00 and 1:00 o’clock.

Participants received a mean number of 66.8 (Mdn =
40) messages per day. Figure 2 illustrates the preva-
lence of messenger apps. With 77.7% of the messages,
WhatsApp was by far the most popular messenger. Text
messages only made up 1.8%. This could be expected,
as in many European countries, WhatsApp has replaced
SMS messages as primary way of exchanging messages.
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Figure 2. Messages per messenger service.

Attentiveness

Once a message has been triaged - i.e. the recipient is
aware of the message and has decided on whether to act
on it or not at the current time -, the receiver’s response
highly depends on factors that are hard to model, such as
the sender-receiver relationship, or the importance and
urgency of the content. Additionally, messages in itself
may be interruptive even without responding to them.
Hence, we focused on modeling attentiveness rather than
responsiveness.

Attending a message can be done in three ways: (1) via
the notification center, which shows the sender and the



first part — sometimes the full content — of the message,
(2) opening the corresponding messenger application, or
(3) by reading the message on another device.

In our data set, 38,180 (68.4%) messages were first at-
tended to by being checked through the notification cen-
ter. 14,134 (25.3%) of the messages were first attended
to on another device, while the remaining 3,510 (6.3%)
messages were first attended to by opening the corre-
sponding messenger application. Participants attended
messages within a median time of 2.08 minutes. 25% of
the messages were attended to within 12.0 seconds, 75%
within 12.3 minutes, and 95% within 80.0 minutes.

A Kruskal Wallis test revealed significant differences in
how fast messages were attended to depending on how
this was done (X?(2) = 2505.139,p < 0.001). Pair-
wise Bonferroni-corrected Mann-Whitney tests showed
that messages were attended to faster through the app
(Mdn = 0.47 min, p < .001) or another device (Mdn =
0.75 min, p < .001) than through the notification center
(Mdn = 3.2 min).

Inferring Attentiveness from Phone-Usage Patterns

Only looking at received messages would result in a
sparse sample set. Since we were interested in people’s
attentiveness for each minute of the day we filled these
gaps by predicting attentiveness through a machine-
learning model, which we previously described in [11].
The model uses 16 features derived from the mobile
phone, namely: the screen status (on/off) and when it
last changed, the status of the proximity sensor (screen
covered / not covered) and when it last changed, the
time since the phone was last unlocked, the time since
the last message arrived, the number of pending mes-
sages, the time since the user last opened the notification
center, the hour of the day, the day of the week, and the
ringer mode.

We used the median delay (2.08 min.) between arrival
and attending a message for classifying attentiveness:
we labeled users attentive when they triaged messages
within these 2.08 minutes, otherwise they were labeled
as non-attentive. We evaluated different classifiers and
achieved best results with Random Forests: 79.29% ac-
curacy and k£ = .586. Precision and recall for being
attentive were .771 and .828 respectively.

Attentiveness Throughout the Day

We used this model to computationally estimate the
times that people were attentive throughout the day.
Therefore, we stepwise iterated through all sensors and
computed the state of each of the features for the begin-
ning of each minute of the day, which resulted in 86,400
states per day. For each of these states, we then ran the
classifier and predicted the participant’s attentiveness.

On average, participants were predicted to be attentive
to messages 50.5% (SD = 14.6%) of the full 24-hours of
the day. The quartiles were 40% (1°Q), 49% (median),
and 55% (37Q).

Hence, for 12.1 hours per day or 84.8 hours per week, the
majority of the participants attended to messages within
2 minutes after arrival. This corresponds to 75.8% of the
hours typically spent awake, assuming an average of 8
hours of sleep.

Figure 3 shows the average attentiveness during the
seven days of the week. There was a significant differ-
ence (F'(6,20802) = 41.07,p < .001) between the days
of the week: a series of Bonferroni-corrected pair-wise t-
tests showed that there were statistically significant dif-
ferences between the weekdays and the days of the week-
end (level of significance at least p < .001): participants
were significantly more attentive to messages during the
week (Mon - Fri) than during the weekend (Sat, Sun).
During the week, participants were predicted to be at-
tentive 62% to 67% of the day, whereas on the weekend
these numbers dropped to 50% and 45% .
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Figure 3. Average attentiveness by day. The dash indi-
cates the median, the diamond the mean level of atten-
tiveness. A value of e.g. 12 indicates that, on average,
users are attentive to messages during 12 hours of the
given day.

Figure 4 shows the average attentiveness during the
hours of the day. The median predicted attentive-
ness ranges from 0% at 4:00 to a maximum of 83%
at 21:00 o’clock. Here we found significant differences
(F(23,20875) = 189.6,p < .001) as well:

Attentiveness was highest during the evening, that is,
between 18:00 and 21:00 o’clock. With a median atten-
tiveness of at least 80%, it was significantly higher than
during the rest of the day (all pair-wise comparisons at
least p < .01, Bonferroni-corrected).

Further, we found a statistically significant difference
between night time (0:00 - 8:00 o’clock) and day time
(10:00 - 23:00 o’clock) (all pair-wise comparisons at least
p < .001, Bonferroni-corrected). As expected, during
nights and early mornings, median attentiveness was al-
ways below 50%, whereas during the day, median atten-
tiveness was always above 67%.

Next, we analyzed the durations where participants were
predicted not to be attentive to messages. Computing
the quartiles, participants were predicted to be in an
attentive state again after 1, 2, and 5 minutes, in 25%,
50%, and 75% of the cases respectively. This indicates
that most of the time when entering a state of not being
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Figure 4. Average attentiveness by hour. The dash indicates the median, the cross the mean level of attentiveness. A
value of .50 indicates that, on average, users would attend to messages within 2 minutes in 50% of the cases at a given

hour.

attentive to messages, participants returned to a state of
attentiveness after a few minutes.

DISCUSSION

In summary, our data shows that people are attentive to
messages 12.1 hours of the day, attentiveness is higher
during the week than on the weekend, people are more
attentive during the evening, and when being inatten-
tive, people return to attentive states within 1-5 minutes
in the majority (75% quantile) of the cases.

Avrahami and Hudson [1] developed statistical models to
predict users’ responsiveness to incoming messages and
the likelihood of receivers responding to messages within
a certain time period. Although they used some of the
same features, their algorithm was limited to Desktop
usage not taking into account people’s messaging behav-
ior while being mobile and throughout the entire day.
Other previous work has quantified the time between
the arrival and acting on messages / notifications with
6 minutes (average) for replying to SMS [2], 6 minutes
(median) for attending to messages [11], and 30 seconds
(median) until a notifications is clicked (if it is clicked)
[13]. With 2 minutes median delay until attending to
messages, our work is in line with these findings, and
stresses that people usually attend to messages promptly.
However, previous studies only report measures of cen-
tral tendency. Our study advances these findings by pro-
viding an estimation of attentiveness throughout the day
- hence providing insights into when people are more or
less attentive and how long phases of inattentiveness last.

Our findings of 12 hours per day exceed findings by Dey
et al. [5], who reported in 2011 that, when phones were
turned on, users kept them within arm’s reach 53% and
in the same room for 88% of the time. Our findings show
that keeping the phone close also translates to attending
to new messages promptly for large parts of the day.

As pointed out by Church and de Oliveira [3], people
have high expectations towards the responsiveness of
their conversation partners in mobile messaging. Hence,

strategies to deliver notifications in opportune moments
[7, 8, 10, 12], like bounded-deferral, which may delay the
delivery of messages, can only work without violating ex-
pectations if there is a sufficient number such moments.
Our findings suggest that this is the case: our partici-
pants were attentive for large parts of their awake time
and phases of estimated non-attentiveness during day-
time typically lasted for only 1-5 minutes. Hence, in
most cases, there will be enough opportune moments
sufficiently stacked together. However, whether these
moments are truly opportune moments, or whether peo-
ple just give their phones priority over other activities,
such as meetings or being out with friends, remains an
open question.

The main limitation of the reported results is the fact
that the analysis is based on predicted attentiveness.
This may cause our model to over-represent instances
of activity, where people are typically not active, which
might, e.g., result in overly high predictions of atten-
tiveness during nighttime. Further, as the model might
alternate between predictions, it may cause our analysis
to underestimate the duration of non-attentiveness.

CONCLUSIONS

This work provides quantitative evidence regarding mo-
bile phone users’ attentiveness to messages. Our results
show that people are highly attentive to messages during
73.5% of their wake hours and that phases of inattentive-
ness typically only last for a few minutes.

For designers, this means that any method for intelligent
notification delivery can assume a generally high level of
attentiveness of mobile phone users. Hence, the concept
of bounded deferral would work well in 75% of the cases
with a bound of 5 minutes.

Future work needs to focus on gaining a better under-
standing of the underlying causes, such as social pressure
and positive reward loops, and on how we can overcome
these to create spaces where phone users can happily
retreat to feeling free to think and reflect.
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